All 4-connected Line Graphs of Claw Free Graphs Are Hamiltonian Connected

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Claw-free 3-connected P11-free graphs are hamiltonian

We show that every 3-connected claw-free graph which contains no induced copy of P11 is hamiltonian. Since there exist non-hamiltonian 3-connected claw-free graphs without induced copies of P12 this result is, in a way, best possible. 1. Statement of the main result A graph G is {H1, H2, . . . Hk}-free if G contains no induced subgraphs isomorphic to any of the graphs Hi, i = 1, 2, . . . , k. A...

متن کامل

Hamiltonian N2-locally connected claw-free graphs

A graph G is N2-locally connected if for every vertex v in G, the edges not incident with v but having at least one end adjacent to v in G induce a connected graph. In 1990, Ryjác̆ek conjectured that every 3-connected N2-locally connected claw-free graph is hamiltonian. This conjecture is proved in this note.

متن کامل

Hamiltonian Connected Line Graphs

Thomassen conjectured [8] that every 4-connected line graph is hamiltonian. An hourglass is a graph isomorphic to K5−E(C), where C is a cycle of length 4 in K5. In [2], it is shown that every 4-connected line graph without an induced subgraph isomorphic to the hourglass is hamiltonian connected. In this note, we prove that every 3-connected, essentially 4-connected hourglass-free line graph is ...

متن کامل

Quadrangularly connected claw-free graphs

A graph G is quadrangularly connected if for every pair of edges e1 and e2 in E(G), G has a sequence of l-cycles (3 ≤ l ≤ 4) C1, C2, ..., Cr such that e1 ∈ E(C1) and e2 ∈ E(Cr) and E(Ci) ∩ E(Ci+1) 6= ∅ for i = 1, 2, ..., r − 1. In this paper, we show that every quadrangularly connected claw-free graph without vertices of degree 1, which does not contain an induced subgraph H isomorphic to eithe...

متن کامل

Hamiltonian connected hourglass free line graphs

Thomassen conjectured [8] that every 4-connected line graph is hamiltonian. An hourglass is a graph isomorphic to K5−E(C4), where C4 is a cycle of length 4 in K5. In [2], it is shown that every 4-connected line graph without an induced subgraph isomorphic to the hourglass is hamiltonian connected. In this note, we prove that every 3-connected, essentially 4-connected hourglass free line graph i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2001

ISSN: 0095-8956

DOI: 10.1006/jctb.2001.2040